Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.

Needs [ "HypothesisTesting™ "]

Since some of the problems in this section require the number critical value, I start out with
the tools to calculate c. The following tables and functions are adapted from https://mathemat-
ica.stackexchange.com/questions/143318/critical-values-for-cram%C3%A9r-von-mises-goodness-of-fit-test,
answer of JimB. This is the z-table for Normal distribution.

(# a is level of significance;

cvm is degrees of freedom; 100000 degrees:=:=o =*)

a={0.05, 0.025, 0.010, 0.005, 0.001}

cvm= {{1, 6.31, 12.7, 31.8, 63.7, 318.3},
{2, 2.92, 4.30, 6.96, 9.92, 22.3},
{3, 2.35, 3.18, 4.54, 5.84, 10.2}, {4, 2.13, 2.78, 3.175,
4.60, 7.17}, {5, 2.02, 2.57, 3.36, 4.03, 5.89},
{6, 1.94, 2.45, 3.14, 3.71, 5.21}, {7, 1.89, 2.36, 3.00,
3.50, 4.79}, {8, 1.86, 2.31, 2.90, 3.36, 4.50},
{9, 1.83, 2.26, 2.82, 3.25, 4.30}, {10, 1.81, 2.23,
2.76, 3.17, 4.14}, {11, 1.80, 2.20, 2.72, 3.11, 4.02},
{12, 1.78, 2.18, 2.68, 3.05, 3.93}, {13, 1.77, 2.16,
2.65, 3.01, 3.85}, {14, 1.76, 2.14, 2.62, 2.98, 3.79},
{15, 1.75, 2.13, 2.60, 2.95, 3.73}, {16, 1.75, 2.12,
2.58, 2.92, 3.69}, {17, 1.74, 2.11, 2.57, 2.90, 3.65},
{18, 1.73, 2.10, 2.55, 2.88, 3.61}, {19, 1.73, 2.09,
2.54, 2.86, 3.58}, {20, 1.72, 2.09, 2.53, 2.85, 3.55},
{22, 1.72, 2.07, 2.51, 2.82, 3.50}, {24, 1.71, 2.06,
2.49, 2.80, 3.47}, {26, 1.71, 2.06, 2.48, 2.78, 3.43},
{28, 1.70, 2.05, 2.47, 2.76, 3.41}, {30, 1.70, 2.04,
2.46, 2.75, 3.39}, {40, 1.68, 2.02, 2.42, 2.70, 3.31},
{50, 1.68, 2.01, 2.40, 2.68, 3.26}, {100, 1.66, 1.98,
2.36, 2.63, 3.17}, {200, 1.65, 1.97, 2.35, 2.60, 3.13},
{100000, 1.65, 1.96, 2.33, 2.58, 3.09}};

critCvM =
Interpolation[Flatten[Table[{{cvm[[i, 1]], a[[j]]1}, ecvm[[i, j +1]1]},
{i, 5}, {i, Length[cvm]}], 1]]

{0.05, 0.025, 0.01, 0.005, 0.001}

InterpolatingFunction[ fd Domain{{1. 1.00x10%}, {0.001 0.05} ]
Outputscalar

Below is the z-table for ChiSquare distribution
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a={0.05, 0.025, 0.010, 0.005}

cxm={{1, 3.84, 5.02, 6.63, 7.88}, {2, 5.99, 7.38, 9.21, 10.60},
{3, 7.81, 9.35, 11.34, 12.84}, {4, 9.49, 11.14, 13.28, 14.86},
{5, 11.07, 12.83, 15.09, 16.75}, {6, 12.59, 14.45, 16.81, 18.55},
{7, 14.07, 16.01, 18.48, 20.28}, {8, 15.51, 17.53, 20.09, 21.95},
{9, 16.92, 19.02, 21.67, 23.59}, {10, 18.31, 20.48, 23.21, 25.19},
{11, 19.68, 21.92, 24.72, 26.76}, {12, 21.03, 23.34, 26.22, 28.30},
{13, 22.36, 24.74, 27.69, 29.82}, {14, 23.68, 26.12, 29.14, 31.32},
{15, 25.00, 27.49, 30.58, 32.80}, {16, 26.30, 28.85, 32.00, 34.27},
{17, 27.59, 30.19, 33.41, 35.72}, {18, 28.87, 31.53, 34.81, 37.16},
{19, 30.14, 32.85, 36.19, 38.58}, {20, 31.41, 34.17, 37.57, 40.00},
{21, 32.7, 35.5, 38.9, 41.4}, {22, 33.9, 36.8, 40.3, 42.8},
{23, 35.2, 38.1, 41.6, 44.2}, {24, 36.4, 39.4, 43.0, 45.6},
{25, 37.7, 40.6, 44.3, 46.9}, {26, 38.9, 41.9, 45.6, 48.3},
{27, 40.1, 43.2, 47.0, 49.6}, {28, 41.3, 44.5, 48.3, 51.0},
{29, 42.6, 45.7, 49.6, 52.3}, {30, 43.8, 47.0, 50.9, 53.7},
{40, 55.8, 59.3, 63.7, 66.8}, {50, 67.5, 71.4, 76.2, 79.5},
{60, 79.1, 83.3, 88.4, 92.0}, {70, 90.5, 95.0, 100.4, 104.2},
{80, 101.9, 106.6, 112.3, 116.3}, {90, 113.1, 118.1, 124.1, 128.3},

1 2
{100, 124.3, 129.6, 135.8, 140.2}, {200, ; tv199-1 +1.64) ’

i-(\[IEEi_I'+1.96)2, % («199-1 +2.33)2, % (v199-1 +2-58)2}}7

(#in case degrees of freedom goes above 199,

the applicable number can be substituted in to replace
199 above in the last line, with the understanding
that the values in the last line are approximate.=x)

critCxM =
Interpolation[Flatten[Table[{{cxm[[i, 1]], a[[j]]}, cxm[[i, j +1]]},
{j, 4}, {i, Length[cxm]}], 1]]

{0.05, 0.025, 0.01, 0.005}

InterpolatingFunction[ /d gzzﬂgtgﬁomJOﬂosaom ]

3. Test u = 0 against u > 0, assuming normality and using the sample O, 1, -1, 3, -8, 6, 1
(deviations of the azimuth [multiples of 0.01 radian] in some revolution of a satellite).
Choose @ = 5% as level of significance.

(*Clear["Global™ *"]x*)

Here the u hypothesis is the null hypothesis. Under this hypothesis the deviations of
azimuth in the satellite’s orbit are due to random chance, and the assertion that the satellite
is not experiencing a progressively dangerous orbital modification.
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sam= {0, 1, -1, 3, -8, 6, 1}
{OI 11 _11 31 _81 61 1}

emp = EmpiricalDistribution[sam]

DataDistribution| j_,—f | ;‘;‘t’:pim's”?ca'

N[Mean[sam] ]
0.285714

N[StandardDeviation[sam] ]
4.30946

DiscretePlot [CDF [emp, x], {x, -4, 4, .01}, ImageSize - 200]

0.6+

0.4

0.2

” 2 2 4

The execution of this problem, from the point of view of the text, involves the critical value,
what I understand is a somewhat dated evaluation device. I get the impression the p-value
is now more commonly used, and one of its advantages is that it is not necessary to consult
a table. The MathWorld article on Hypothesis Testing gives a basic routine which I use. The
LocationTest in Mathematica provides what is necessary in a convenient tabular form,
and all T have to do is to compare the level of significance with the p-value.

0.05<0.866

and the upshot of this is that the satellite is deemed not to be doomed, the null hypothesis
is accepted.

h = LocationTest [sam, Automatic, {"TestDataTable", All}]

Statistic P-Value
PairedT 0.175412 0.866526
PairedZ 0.175412 0.860756

Sign 4 0.6875

SignedRank 13. 0.671566
T 0.175412 0.866526
4 0.175412 0.860756

The T value in the above table agrees with the text answer within 28S.

The are seven values in the sample list, which means there are six degrees of freedom. And
the a level of significance is 0.05. So
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c =critCVvM[6, 0.05]

1.94

The answer in the green cell above matches the answer in the text for the value of c. I
should be prepared to work this out by hand according to the text examples. To that end I

consider
_ %-upo __ 0.286-0
s/vn  4.30946 /7
Vn (F-po) = 0.175587
S

For some reason the above is not precisely what is shown in the location table for T.
4. In one of his classical experiments, Buffon obtained 2048 heads in tossing a coin 4040

times. Was the coin fair?

5. Do the same test as in problem 4, using a result by K. Pearson, who obtained 6019
heads in 12,000 trials.

fin = Table[0, {i, 12000 - 6019}];

finl = Table[1l, {i, 6019}];

Total[finl]

6019

gra = Join[fin, finl];

grad = EmpiricalDistribution[gra]

DataDistribution[ HJ“EQ:;SEQZﬂm ]

N[Mean[grad]]
0.501583

N[Variance[grad]]
0.249997

N[StandardDeviation[grad]]
0.499997

I'm going to illustrate something with confidence level. First, suppose I want to look at the
set I made above “gra”, containing the 12000 flips. If I want to have confidence level of
99% that the mean will be in an interval, that interval has to grow to include some slightly
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unusual possibilities that may be just around the corner.

MeanCI[gra, ConfidenceLevel -» 0.99]
{0.489824, 0.513343}

On the other hand, if I don’t need the confidence that the mean of the set will stay inside a
certain boundary, upon reducing the required confidence level, the interval shrinks. So to
observe the currently calculated mean, the confidence level can go way down, even as far
as 0.1.

MeanCI[gra, Confidencelevel -» .1]
{0.50101, 0.502157}

Let me get a number to judge the accuracy of the mean
Abs[0.5 - Mean[gra]]

0.00158333

Then let me throw around some Bernoulli pseudos.
1
bl==RandomVariate[BernoulliDistribution[;ﬂ, 10000];

Abs[0.5 - Mean[bl]]
0.0069

1
b2:=RandomVariate[BernoulliDistribution[;ﬂ, 12000];

Abs[0.5 - Mean[b2] ]

0.00175

N[Variance[b2]]
0.250018

Comparing the two yellow cells above, I see that Pearson’s trial does at least as well as an
instance of Mathematica trying to imitate a fair coin at the same sample size (yellow),
which, since the sample size is sizable, seems like pretty good evidence of fairness to me.
Now I will bring in the way that https://www.math.arizona.edu/~jwatkins/505d/Lesson_11.pdf
handles this coin-flipping situation, adapting from 1000 flips to 12000.

Clear|[c]

I get my c value. 12000 flips is far enough above 200 that I will use the infinity value input,
at 0.05 significance level.
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c = critCvVM[100 000, 0.05]
1.65

Getting my expected population size of heads, 11 = 12 000 po

1
u=12000 x —

2
6000

Getting my variance.

_ 11
sigmasq=npo (1 - po) == 12000 x ; 2—
sigmasq =n (1 - pg) po == 3000
Getting my standard deviation.
sigma = (3000)°-5
54.7723
Getting my low expectation.

U - ¢ sigma

5909.63

Getting my high expectation.
U + c sigma

6090.37

So if I am interpreting this right, any number of heads between the yellow number and
green number above indicates a fair coin, within the stated level of significance. Inciden-
tally, the green number is the one that the text answer gives for c.

6. Assuming normality and known variance o = 9, test the hypothesis 4 = 60.0 against the
alternative i = 57.0 using a sample of size 20 with mean X = 58.50 and choosing @ = 5%.

7. How does the result in problem 6 change if we use a smaller size, say, of size 5, the
other data (x = 58.05, @ = 5%, etc.) remaining as before?

Problem 7 disagrees with problem 6 on the mean, although it is apparent they should
agree. The discrepancy makes a significant difference in the statistics, so I show both
versions.

First Comparison. (mean 58.50)

As I read the Mathematica docs for LocationTest, the y items listed in the problem descrip-
tion cannot be done in the same test. A test checks the y that is provided against a not-u
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condition. If I have this right, then each desired y must be tested separately. Also, to make a
decision I will look at the smaller p-value which is associated with T. In the first compari-
son, neither hypothesis looks attractive, but I will (would) choose u = 60, since it has the
smaller p-value. I have included the location test that conforms to the current mean of the
data, and in the tests I've tried, it has the worst p-value of all.

norm = RandomVariate[NormalDistribution[58.50, 3], 5]
{56.0948, 58.9339, 58.5426, 58.9813, 60.1389}

mn = Mean [norm]
58.5383

h = LocationTest[norm, 60.0, {"TestDataTable", All}]

Statistic P-Value

PairedT -2.19294 0.093385
PairedZ -2.19294 0.0283116
Sign 1 0.375
SignedRank | 1. 0.105645
T -2.19294 0.093385
z -2.19294 0.0283116

h = LocationTest [norm, 57.0, {"TestDataTable", All}]

Statistic P-Value
PairedT 2.30789 0.0822223
PairedZ 2.30789 0.021005

Sign 4 0.375
SignedRank | 14. 0.105645
T 2.30789 0.0822223
z 2.30789 0.021005

Second Comparison. (mean 58.05)
norm2 = RandomVariate[NormalDistribution[58.05, 3], 5]

{60.1996, 61.5539, 61.099, 58.5695, 52.5619}

mn = Mean [norm2]
58.7968

h = LocationTest [norm2, 60.0, {"TestDataTable", All}]

Statistic P-Value

PairedT -0.7336550.503841
PairedZ -0.7336550.463159
Sign 3 1.
SignedRank | 7. 1.
T -0.7336550.503841
4 -0.7336550.463159

h = LocationTest [norm2, 57.0, {"TestDataTable", All}]

Statistic P-Value

PairedT 1.09557 0.334805
PairedZ 1.09557 0.273268
Sign 4 0.375

SignedRank | 11. 0.418492
T 1.09557 0.334805

4 1.09557 0.273268
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In the second comparison, the p-value for T in 4 = 57 may actually be less than 0.05,
(depending on the generated pseudo-values) so that u would be my choice if it were
available.

I will (reluctantly) turn to WolframAlpha for a different view of this. (I don’t like cells that
cannot be refreshed off-line.) What I found was that both hypotheses, for 60 and for 57
mean, are rejected at the 5% level when 20 items make up the sample, but neither is
rejected when only 5 items make up the sample.

WolframAlpha["t-test mu0=60, xbar=58.5, s=3, n=5"]

Inputinformatian

T-test for a population mean
hypothesized mean 60
sample mean 58.5
sample standard deviation | 3

sample size 5

Lefttailedtest Righttailedtest | Twotailedtest
Nullhypothesis
u =60
Alternativlypothesis
n<60
Teststatistic
—1.11803
Degreesoffreedom
4
p-value
0.1631

Samplinglistributioofteststatistienderthenullhypothesis

0‘43 '
03
0‘2E
0.1

0.0

min —{— max

Powerfunction Significanckevel5% |
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0.8

0.6

04

power

02

0.0

56 58 60 62 64

Testconclusions
null hypothesis is not rejected at 1% significance level

null hypothesis is not rejected at 5% significance level
null hypothesis is not rejected at 10% significance level

(assuming a simple random sample; results are exact if the population

is normal and approximate for large samples from non-normal populations)

Wolfram Alpha

WolframAlpha["t-test mu0=57, xbar=58.5, s=3, n=5"]

Inputinformatian

T-test for a population mean
hypothesized mean 57
sample mean 58.5
sample standard deviation = 3

sample size 5

Righttailedtest Lefttailedtest | | Two+tailedtest
Nullhypothesis
n=>57
Alternativlypothesis
pu>57
Teststatistic
1.11803
Degreesoffreedom
4
p-value
0.1631

Samplinglistributioofteststatisticnderthenullhypothesis

T T T T

04
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min —0 max —

Significanckevel5% | ¥

08} }
06| / 3

_
(0]
; '
2 04

02

00!

54 56 58 60
u
min ':D max D

Testconclusions
null hypothesis is not rejected at 1% significance level
null hypothesis is not rejected at 5% significance level
null hypothesis is not rejected at 10% significance level

(assuming a simple random sample; results are exact if the population

is normal and approximate for large samples from non-normal populations)

Wolfram Alpha

9. What is the rejection region in problem 6 in the case of a two-sided test with & = 5%?

The following grid shows the results of testing on Wolfram | Alpha.

Grid[{{57, Reject}, {58, Do not reject},
{59, Do not reject}, {60, Reject}}, Frame - All]

57 Reject
58 | Do not reject
59 | Do not reject
60 Reject

11. A firm sells oil in cans containing 5000 g oil per can and is interested to know
whether the mean weight differs significantly from 5000 g at the 5% level, in which case
the filling machine has to be adjusted. Set up a hypothesis and an alternative and per-
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form the test, assuming normality and using a sample of 50 fillings with mean 4990 g
and standard deviation 20 g.

Clear["Global™ *"]

0il = RandomVariate[NormalDistribution[5000, 20], 50];
Mean[oil]

5004.05

Variance[oil]
424.09

h = LocationTest[oil, 4990, {"TestDataTable", All}]

Statistic P-Value
PairedT 4.82445 0.0000140861
PairedZ 4.82445 1.4038810°°

Sign 35 0.00660045
SignedRank | 1045. 0.000085340¢&
T 4.82445 0.0000140861
4 4.82445 1.4038810°°

The p-value for T is so small that I think the alternative hypothesis based on 4990 must be
accepted. I think this is what the text answer is saying also. This judgment is reinforced by
W|A.

WolframAlpha["t-test mu0=5000, xbar=4990, s=20, n=50"]

Inputinformatian

T-test for a population mean
hypothesized mean 5000
sample mean 4990
sample standard deviation = 20

sample size 50

Lefttailedtest

Nullhypothesis
= 5000
Alternativaypothesis
i <5000

Teststatistic

- i ~ —3.53553
V2
Degreesoffreedom
49
p-value
4.5x104

Samplinglistributioofteststatisticnderthenullhypothesis
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min —0 max 0
Powerfunction Significanckevel5% | v
1.0 e e
08}
5 046E
R
8 04

02 \

0.0 . " ]
4997 4998 4999 5000 5001 5002 5003

u

—

min N S max

Testconclusions
null hypothesis is rejected at 1% significance level

null hypothesis is rejected at 5% significance level
null hypothesis is rejected at 10% significance level

(assuming a simple random sample; results are exact if the population
is normal and approximate for large samples from non-normal populations)

Wolfram Alpha

Based on the W|A output above, it looks like the filling machine needs to be adjusted,
because the sample data indicate significantly lower fill weight.

13. If simultaneous measurements of electric voltage by two different types of voltmeter
yield the differences (in volts) 0.4, -0.6, 0.2, 0.0, 1.0, 1.4, 0.4, 1.6, can we assert at the
5% level that there is no significant difference in the calibration of the two types of instru-
ments? Assume normality.

I do not understand the problem. Would it not make a difference whether I am measuring
110 V or 10000 V? I suppose that the normality of the sample is the guiding factor. If the
differences between the voltmeters is close to a normal curve, they are probably equivalent.
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dtest = {0.4, -0.6, 0.2, 0.0, 1.0, 1.4, 0.4, 1.6}
{0.4, -0.6, 0.2, 0., 1., 1.4, 0.4, 1.6}

Mean|[dtest]
0.55

StandardDeviation[dtest]
0.738725

voltmeter = DistributionFitTest[dtest]

0.687289

d = NormalDistribution[0.55, 9]
NormalDistribution[0.55, 9]

QuantilePlot[dtest, 4]

15-

05"
00} o

—05f.-

—1‘0 —‘5 (I) é 1‘0
The score on the probabilty which is the result of the DistributionFitTest is pretty

high, although I didn’t find any numerical guidance on making a choice. I would call the
meters equivalent.

15. Suppose that in the past the standard deviation of weights of certain 100.0-0z pack-
ages filled by a machine was 0.8 oz. Test the hypothesis Hp : o = 0.8 against the alterna-
tive H; : o > 0.8 (an undesirable increase), using a sample of 20 packages with standard
deviation 1.0 oz and assuming normality. Choose @ = 5%.

Clear["Global™ *"]

When fiddling with mean values, the Normal distribution is the common one. Sometimes,
as in this problem, the focus is on standard deviation, and I get the impression that that is
where the ChiSquare distribution is commonly used. I don’t know if it’s general, but in this
case it is not necessary to construct a RandomVariate set.
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c = critCXM[19, 0.05] (*degrees of freedom, level of significancex)

30.14
Hlsigma )2
DegreesOfFreedom | ————
HOsigma
1.0)2
19( )
0.8
29.6875

Since the calculated formula is less than the c value, the proposed hypothesis is accepted.
That is, the standard deviation is considered to have risen above 0.8.

17. Brand A gasoline was used in 16 similar automobiles under identical conditions. The
corresponding sample of 16 values (miles per gallon) had mean 19.6 and standard devia-
tion 0.4. Under the same conditions, high-power brand B gasoline gave a sample of 16
values with mean 20.2 and standard deviation 0.6. Is the mileage of B significantly better
than that of A? Test at the 5% level; assume normality. First guess. Then calculate.

According to example 5 on p. 1084, although the number of degrees of freedom is the sum
of the two samples, it is necessary to subtract one from each sample, leaving, in this case,
30 total.

c =critCvM[30, 0.05]

1.7

Numbered line (12) on p. 1085 gives the formula for tp in a combined instance such as the
present

to=yn —EL

I see that n is not the sum of the two samples, but rather the size of one complete sample.
Inasmuch as the procedure is supposed to allow for samples of different sizes, there must be
a rule for choosing n when the samples are not the same size, but I do not know it. The
calculated set-up for to, shown below, appears in the text answer.

20.2 -19.6

A/ (0.4)2 + (0.6)2
3.3282

I notice that the formula for ty above contains the sense that X - ¥ in the numerator makes x
the Hy hypothesis and y the H, hypothesis. In this case Hy is gasoline B. Since ty is larger
than c at the 0.05 level, it means that when the alternative is ignored, B will be triumphant.



