
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.

Needs["HypothesisTesting`"]

Since some of the problems in this section require the number critical value, I start out with 
the tools to calculate c. The following tables and functions are adapted from https://mathemat-
ica.stackexchange.com/questions/143318/critical-values-for-cram%C3%A9r-von-mises-goodness-of-fit-test, 
answer of JimB. This is the z-table for Normal distribution.
(*⋆ α is level of significance;
cvm is degrees of freedom; 100000 degrees⩵∞ *⋆)
α = {0.05, 0.025, 0.010, 0.005, 0.001}
cvm = {{1, 6.31, 12.7, 31.8, 63.7, 318.3},

{2, 2.92, 4.30, 6.96, 9.92, 22.3},
{3, 2.35, 3.18, 4.54, 5.84, 10.2}, {4, 2.13, 2.78, 3.75,
4.60, 7.17}, {5, 2.02, 2.57, 3.36, 4.03, 5.89},

{6, 1.94, 2.45, 3.14, 3.71, 5.21}, {7, 1.89, 2.36, 3.00,
3.50, 4.79}, {8, 1.86, 2.31, 2.90, 3.36, 4.50},

{9, 1.83, 2.26, 2.82, 3.25, 4.30}, {10, 1.81, 2.23,
2.76, 3.17, 4.14}, {11, 1.80, 2.20, 2.72, 3.11, 4.02},

{12, 1.78, 2.18, 2.68, 3.05, 3.93}, {13, 1.77, 2.16,
2.65, 3.01, 3.85}, {14, 1.76, 2.14, 2.62, 2.98, 3.79},

{15, 1.75, 2.13, 2.60, 2.95, 3.73}, {16, 1.75, 2.12,
2.58, 2.92, 3.69}, {17, 1.74, 2.11, 2.57, 2.90, 3.65},

{18, 1.73, 2.10, 2.55, 2.88, 3.61}, {19, 1.73, 2.09,
2.54, 2.86, 3.58}, {20, 1.72, 2.09, 2.53, 2.85, 3.55},

{22, 1.72, 2.07, 2.51, 2.82, 3.50}, {24, 1.71, 2.06,
2.49, 2.80, 3.47}, {26, 1.71, 2.06, 2.48, 2.78, 3.43},

{28, 1.70, 2.05, 2.47, 2.76, 3.41}, {30, 1.70, 2.04,
2.46, 2.75, 3.39}, {40, 1.68, 2.02, 2.42, 2.70, 3.31},

{50, 1.68, 2.01, 2.40, 2.68, 3.26}, {100, 1.66, 1.98,
2.36, 2.63, 3.17}, {200, 1.65, 1.97, 2.35, 2.60, 3.13},

{100000, 1.65, 1.96, 2.33, 2.58, 3.09}};

critCVM =
Interpolation[Flatten[Table[{{cvm[[i, 1]], α[[j]]}, cvm[[i, j + 1]]},

{j, 5}, {i, Length[cvm]}], 1]]

{0.05, 0.025, 0.01, 0.005, 0.001}

InterpolatingFunction Domain: 1., 1.00×105, {0.001, 0.05}
Output: scalar



Below is the z-table for ChiSquare distribution



α = {0.05, 0.025, 0.010, 0.005}
cxm = {1, 3.84, 5.02, 6.63, 7.88}, {2, 5.99, 7.38, 9.21, 10.60},

{3, 7.81, 9.35, 11.34, 12.84}, {4, 9.49, 11.14, 13.28, 14.86},
{5, 11.07, 12.83, 15.09, 16.75}, {6, 12.59, 14.45, 16.81, 18.55},
{7, 14.07, 16.01, 18.48, 20.28}, {8, 15.51, 17.53, 20.09, 21.95},
{9, 16.92, 19.02, 21.67, 23.59}, {10, 18.31, 20.48, 23.21, 25.19},
{11, 19.68, 21.92, 24.72, 26.76}, {12, 21.03, 23.34, 26.22, 28.30},
{13, 22.36, 24.74, 27.69, 29.82}, {14, 23.68, 26.12, 29.14, 31.32},
{15, 25.00, 27.49, 30.58, 32.80}, {16, 26.30, 28.85, 32.00, 34.27},
{17, 27.59, 30.19, 33.41, 35.72}, {18, 28.87, 31.53, 34.81, 37.16},
{19, 30.14, 32.85, 36.19, 38.58}, {20, 31.41, 34.17, 37.57, 40.00},
{21, 32.7, 35.5, 38.9, 41.4}, {22, 33.9, 36.8, 40.3, 42.8},
{23, 35.2, 38.1, 41.6, 44.2}, {24, 36.4, 39.4, 43.0, 45.6},
{25, 37.7, 40.6, 44.3, 46.9}, {26, 38.9, 41.9, 45.6, 48.3},
{27, 40.1, 43.2, 47.0, 49.6}, {28, 41.3, 44.5, 48.3, 51.0},
{29, 42.6, 45.7, 49.6, 52.3}, {30, 43.8, 47.0, 50.9, 53.7},
{40, 55.8, 59.3, 63.7, 66.8}, {50, 67.5, 71.4, 76.2, 79.5},
{60, 79.1, 83.3, 88.4, 92.0}, {70, 90.5, 95.0, 100.4, 104.2},
{80, 101.9, 106.6, 112.3, 116.3}, {90, 113.1, 118.1, 124.1, 128.3},

{100, 124.3, 129.6, 135.8, 140.2}, 200,
1
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2
,
1
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2
,
1

2
 199 -− 1 + 2.58

2
;

(*⋆in case degrees of freedom goes above 199,
the applicable number can be substituted in to replace
199 above in the last line, with the understanding
that the values in the last line are approximate.*⋆)

critCXM =
Interpolation[Flatten[Table[{{cxm[[i, 1]], α[[j]]}, cxm[[i, j + 1]]},

{j, 4}, {i, Length[cxm]}], 1]]

{0.05, 0.025, 0.01, 0.005}

InterpolatingFunction Domain: {{1., 200.}, {0.005, 0.05}}
Output: scalar



3.  Test μ = 0 against μ > 0, assuming normality and using the sample 0, 1, -1, 3, -8, 6, 1 
(deviations of the azimuth [multiples of 0.01 radian] in some revolution of a satellite). 
Choose α = 5% as level of significance.

(*⋆Clear["Global`*⋆"]*⋆)

Here the μ hypothesis is the null hypothesis. Under this hypothesis the deviations of 
azimuth in the satellite’s orbit are due to random chance, and the assertion that the satellite 
is not experiencing a progressively dangerous orbital modification.
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sam = {0, 1, -−1, 3, -−8, 6, 1}

{0, 1, -−1, 3, -−8, 6, 1}

emp = EmpiricalDistribution[sam]

DataDistribution Type: Empirical
Datapoints: 7



N[Mean[sam]]

0.285714

N[StandardDeviation[sam]]

4.30946

DiscretePlot[CDF[emp, x], {x, -−4, 4, .01}, ImageSize → 200]

The execution of this problem, from the point of view of the text, involves the critical value, 
what I understand is a somewhat dated evaluation device. I get the impression the p-value 
is now more commonly used, and one of its advantages is that it is not necessary to consult 
a table. The MathWorld article on Hypothesis Testing gives a basic routine which I use. The 
LocationTest in Mathematica provides what is necessary in a convenient tabular form, 
and all I have to do is to compare the level of significance with the p-value.
0.05 < 0.866

and the upshot of this is that the satellite is deemed not to be doomed, the null hypothesis 
is accepted.
h = LocationTest[sam, Automatic, {"TestDataTable", All}]

Statistic P-Value
PairedT 0.175412 0.866526
PairedZ 0.175412 0.860756
Sign 4 0.6875
Signed-Rank 13. 0.671566
T 0.175412 0.866526
Z 0.175412 0.860756

The T value in the above table agrees with the text answer within 2S.

 The are seven values in the sample list, which means there are six degrees of freedom. And 
the α level of significance is 0.05. So
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c = critCVM[6, 0.05]

1.94

The answer in the green cell above matches the answer in the text for the value of c. I 
should be prepared to work this out by hand according to the text examples. To that end I 
consider

t =
x -− μ0

s  n
==

0.286 -− 0

4.30946  7

n (x -− μ0)

s
⩵ 0.175587

For some reason the above is not precisely what is shown in the location table for T.

4.  In one of his classical experiments, Buffon obtained 2048 heads in tossing a coin 4040 
times. Was the coin fair?

5.  Do the same test as in problem 4, using a result by K. Pearson, who obtained 6019 
heads in 12,000 trials.

fin = Table[0, {i, 12 000 -− 6019}];

fin1 = Table[1, {i, 6019}];

Total[fin1]

6019

gra = Join[fin, fin1];

grad = EmpiricalDistribution[gra]

DataDistribution Type: Empirical
Datapoints: 12000



N[Mean[grad]]

0.501583

N[Variance[grad]]

0.249997

N[StandardDeviation[grad]]

0.499997

I’m going to illustrate something with confidence level. First, suppose I want to look at the 
set I made above “gra”, containing the 12000 flips. If I want to have confidence level of 
99% that the mean will be in an interval, that interval has to grow to include some slightly 
unusual possibilities that may be just around the corner.
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I’m going to illustrate something with confidence level. First, suppose I want to look at the 
set I made above “gra”, containing the 12000 flips. If I want to have confidence level of 
99% that the mean will be in an interval, that interval has to grow to include some slightly 
unusual possibilities that may be just around the corner.
MeanCI[gra, ConfidenceLevel → 0.99]

{0.489824, 0.513343}

On the other hand, if I don’t need the confidence that the mean of the set will stay inside a 
certain boundary, upon reducing the required confidence level, the interval shrinks. So to 
observe the currently calculated mean, the confidence level can go way down, even as far 
as 0.1. 
MeanCI[gra, ConfidenceLevel → .1]

{0.50101, 0.502157}

Let me get a number to judge the accuracy of the mean
Abs[0.5 -− Mean[gra]]

0.00158333

Then let me throw around some Bernoulli pseudos.

b1 = RandomVariateBernoulliDistribution
1

2
, 10 000;

Abs[0.5 -− Mean[b1]]

0.0069

b2 = RandomVariateBernoulliDistribution
1

2
, 12 000;

Abs[0.5 -− Mean[b2]]

0.00175

N[Variance[b2]]

0.250018

Comparing the two yellow cells above, I see that Pearson’s trial does at least as well as an 
instance of Mathematica trying to imitate a fair coin at the same sample size (yellow), 
which, since the sample size is sizable, seems like pretty good evidence of fairness to me.

Now I will bring in the way that https://www.math.arizona.edu/~jwatkins/505d/Lesson_11.pdf 
handles this coin-flipping situation, adapting from 1000 flips to 12000.
Clear[c]

I get my c value. 12000 flips is far enough above 200 that I will use the infinity value input, 
at 0.05 significance level.
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c = critCVM[100000, 0.05]

1.65

Getting my expected population size of heads, μ = 12 000 p0

μ = 12 000 ×
1

2
6000

Getting my variance.

sigmasq ⩵ n p0 (1 -− p0) ⩵ 12000 ×
1

2

1

2
sigmasq ⩵ n (1 -− p0) p0 ⩵ 3000

Getting my standard deviation.
sigma = (3000)0.5

54.7723

Getting my low expectation.
μ -− c sigma

5909.63

Getting my high expectation.
μ + c sigma

6090.37

So if I am interpreting this right, any number of heads between the yellow number and 
green number above indicates a fair coin, within the stated level of significance. Inciden-
tally, the green number is the one that the text answer gives for c.

6.  Assuming normality and known variance σ2 = 9, test the hypothesis μ = 60.0 against the 
alternative μ = 57.0 using a sample of size 20 with mean x = 58.50 and choosing α = 5%.

7.  How does the result in problem 6 change if we use a smaller size, say, of size 5, the 
other data (x = 58.05, α = 5%, etc.) remaining as before?

Problem 7 disagrees with problem 6 on the mean, although it is apparent they should 
agree. The discrepancy makes a significant difference in the statistics, so I show both 
versions.

First Comparison. (mean 58.50)

As I read the Mathematica docs for LocationTest, the μ items listed in the problem descrip-
tion cannot be done in the same test.  A test checks the μ that is provided against a not-μ 
condition. If I have this right, then each desired μ must be tested separately. Also, to make a 
decision I will look at the smaller p-value which is associated with T. In the first compari-
son, neither hypothesis looks attractive, but I will (would) choose μ = 60, since it has the 
smaller p-value. I have included the location test that conforms to the current mean of the 
data, and in the tests I’ve tried, it has the worst p-value of all.
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As I read the Mathematica docs for LocationTest, the μ items listed in the problem descrip-
tion cannot be done in the same test.  A test checks the μ that is provided against a not-μ 
condition. If I have this right, then each desired μ must be tested separately. Also, to make a 
decision I will look at the smaller p-value which is associated with T. In the first compari-
son, neither hypothesis looks attractive, but I will (would) choose μ = 60, since it has the 
smaller p-value. I have included the location test that conforms to the current mean of the 
data, and in the tests I’ve tried, it has the worst p-value of all.
norm = RandomVariate[NormalDistribution[58.50, 3], 5]

{56.0948, 58.9339, 58.5426, 58.9813, 60.1389}

mn = Mean[norm]

58.5383

h = LocationTest[norm, 60.0, {"TestDataTable", All}]
Statistic P-Value

PairedT -−2.19294 0.093385
PairedZ -−2.19294 0.0283116
Sign 1 0.375
Signed-Rank 1. 0.105645
T -−2.19294 0.093385
Z -−2.19294 0.0283116

h = LocationTest[norm, 57.0, {"TestDataTable", All}]
Statistic P-Value

PairedT 2.30789 0.0822223
PairedZ 2.30789 0.021005
Sign 4 0.375
Signed-Rank 14. 0.105645
T 2.30789 0.0822223
Z 2.30789 0.021005

Second Comparison. (mean 58.05)
norm2 = RandomVariate[NormalDistribution[58.05, 3], 5]

{60.1996, 61.5539, 61.099, 58.5695, 52.5619}

mn = Mean[norm2]

58.7968

h = LocationTest[norm2, 60.0, {"TestDataTable", All}]
Statistic P-Value

PairedT -−0.733655 0.503841
PairedZ -−0.733655 0.463159
Sign 3 1.
Signed-Rank 7. 1.
T -−0.733655 0.503841
Z -−0.733655 0.463159

h = LocationTest[norm2, 57.0, {"TestDataTable", All}]
Statistic P-Value

PairedT 1.09557 0.334805
PairedZ 1.09557 0.273268
Sign 4 0.375
Signed-Rank 11. 0.418492
T 1.09557 0.334805
Z 1.09557 0.273268

In the second comparison, the p-value for T in μ = 57 may actually be less than 0.05, 
(depending on the generated pseudo-values) so that μ would be my choice if it were 
available.
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In the second comparison, the p-value for T in μ = 57 may actually be less than 0.05, 
(depending on the generated pseudo-values) so that μ would be my choice if it were 
available.

I will (reluctantly) turn to WolframAlpha for a different view of this. (I don’t like cells that 
cannot be refreshed off-line.) What I found was that both hypotheses, for 60 and for 57 
mean, are rejected at the 5% level when 20 items make up the sample, but neither is 
rejected when only 5 items make up the sample.
WolframAlpha["t-−test mu0=60, xbar=58.5, s=3, n=5"]

Inputinformation:

T-test for a population mean

hypothesized mean 60

sample mean 58.5

sample standard deviation 3

sample size 5

Left-tailedtest: Right-tailedtest Two-tailedtest
Nullhypothesis:
μ = 60

Alternativehypothesis:
μ < 60

Teststatistic:
-−1.11803

Degreesof freedom:
4

p-value:
0.1631

Samplingdistributionof teststatisticunderthenullhypothesis:

min max

Powerfunction: Significancelevel5% | ▾
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Significancelevel5% | ▾

min max

Testconclusions:
null hypothesis is not rejected at 1% significance level
null hypothesis is not rejected at 5% significance level
null hypothesis is not rejected at 10% significance level
(assuming a simple random sample; results are exact if the population

is normal and approximate for large samples from non-normal populations)

WolframAlpha["t-−test mu0=57, xbar=58.5, s=3, n=5"]

Inputinformation:

T-test for a population mean

hypothesized mean 57

sample mean 58.5

sample standard deviation 3

sample size 5

Right-tailedtest: Left-tailedtest Two-tailedtest
Nullhypothesis:
μ = 57

Alternativehypothesis:
μ > 57

Teststatistic:
1.11803

Degreesof freedom:
4

p-value:
0.1631

Samplingdistributionof teststatisticunderthenullhypothesis:
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min max

Powerfunction: Significancelevel5% | ▾

min max

Testconclusions:
null hypothesis is not rejected at 1% significance level
null hypothesis is not rejected at 5% significance level
null hypothesis is not rejected at 10% significance level
(assuming a simple random sample; results are exact if the population

is normal and approximate for large samples from non-normal populations)

9.  What is the rejection region in problem 6 in the case of a two-sided test with α = 5%?

The following grid shows the results of testing on Wolfram|Alpha.
Grid[{{57, Reject}, {58, Do not reject},

{59, Do not reject}, {60, Reject}}, Frame → All]

57 Reject
58 Do not reject
59 Do not reject
60 Reject

11.  A firm sells oil in cans containing 5000 g oil per can and is interested to know 
whether the mean weight differs significantly from 5000 g at the 5% level, in which case 
the filling machine has to be adjusted. Set up a hypothesis and an alternative and per-
form the test, assuming normality and using a sample of 50 fillings with mean 4990 g 
and standard deviation 20 g.
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11.  A firm sells oil in cans containing 5000 g oil per can and is interested to know 
whether the mean weight differs significantly from 5000 g at the 5% level, in which case 
the filling machine has to be adjusted. Set up a hypothesis and an alternative and per-
form the test, assuming normality and using a sample of 50 fillings with mean 4990 g 
and standard deviation 20 g.

Clear["Global`*⋆"]

oil = RandomVariate[NormalDistribution[5000, 20], 50];
Mean[oil]

5004.05

Variance[oil]

424.09

h = LocationTest[oil, 4990, {"TestDataTable", All}]
Statistic P-Value

PairedT 4.82445 0.0000140861
PairedZ 4.82445 1.40388×10-−6
Sign 35 0.00660045
Signed-Rank 1045. 0.0000853408
T 4.82445 0.0000140861
Z 4.82445 1.40388×10-−6

The p-value for T is so small that I think the alternative hypothesis based on 4990 must be 
accepted. I think this is what the text answer is saying also. This judgment is reinforced by 
W|A.
WolframAlpha["t-−test mu0=5000, xbar=4990, s=20, n=50"]

Inputinformation:

T-test for a population mean

hypothesized mean 5000

sample mean 4990

sample standard deviation 20

sample size 50

Left-tailedtest: Right-tailedtest Two-tailedtest
Nullhypothesis:
μ = 5000

Alternativehypothesis:
μ < 5000

Teststatistic:

-−
5

2
≈ -−3.53553

Degreesof freedom:
49

p-value:
4.5 × 10-−4

Samplingdistributionof teststatisticunderthenullhypothesis:
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min max

Powerfunction: Significancelevel5% | ▾

min max

Testconclusions:
null hypothesis is rejected at 1% significance level
null hypothesis is rejected at 5% significance level
null hypothesis is rejected at 10% significance level
(assuming a simple random sample; results are exact if the population

is normal and approximate for large samples from non-normal populations)

Based on the W|A output above, it looks like the filling machine needs to be adjusted, 
because the sample data indicate significantly lower fill weight.

13.  If simultaneous measurements of electric voltage by two different types of voltmeter 
yield the differences (in volts) 0.4, -0.6, 0.2, 0.0, 1.0, 1.4, 0.4, 1.6, can we assert at the 
5% level that there is no significant difference in the calibration of the two types of instru-
ments? Assume normality.

I do not understand the problem. Would it not make a difference whether I am measuring 
110 V or 10000 V? I suppose that the normality of the sample is the guiding factor. If the 
differences between the voltmeters is close to a normal curve, they are probably equivalent.
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dtest = {0.4, -−0.6, 0.2, 0.0, 1.0, 1.4, 0.4, 1.6}

{0.4, -−0.6, 0.2, 0., 1., 1.4, 0.4, 1.6}

Mean[dtest]

0.55

StandardDeviation[dtest]

0.738725

voltmeter = DistributionFitTest[dtest]

0.687289

𝒹 = NormalDistribution[0.55, 9]

NormalDistribution[0.55, 9]

QuantilePlot[dtest, 𝒹]

The score on the probabilty which is the result of the DistributionFitTest is pretty 
high, although I didn’t find any numerical guidance on making a choice. I would call the 
meters equivalent.

15.  Suppose that in the past the standard deviation of weights of certain 100.0-oz pack-
ages filled by a machine was 0.8 oz. Test the hypothesis H0 : σ = 0.8 against the alterna-
tive H1 : σ > 0.8 (an undesirable increase), using a sample of 20 packages with standard 
deviation 1.0 oz and assuming normality. Choose α = 5%.

Clear["Global`*⋆"]

When fiddling with mean values, the Normal distribution is the common one. Sometimes, 
as in this problem, the focus is on standard deviation, and I get the impression that that is 
where the ChiSquare distribution is commonly used. I don’t know if it’s general, but in this 
case it is not necessary to construct a RandomVariate set.

25.4 Testing Hypotheses. Decisions 1077.nb     13



c = critCXM[19, 0.05] (*⋆degrees of freedom, level of significance*⋆)

30.14

DegreesOfFreedom
H1sigma

H0sigma

2

19
1.0

0.8

2

29.6875

Since the calculated formula is less than the c value, the proposed hypothesis is accepted. 
That is, the standard deviation is considered to have risen above 0.8.

17. Brand A gasoline was used in 16 similar automobiles under identical conditions. The 
corresponding sample of 16 values (miles per gallon) had mean 19.6 and standard devia-
tion 0.4. Under the same conditions, high-power brand B gasoline gave a sample of 16 
values with mean 20.2 and standard deviation 0.6. Is the mileage of B significantly better 
than that of A? Test at the 5% level; assume normality. First guess. Then calculate.

According to example 5 on p. 1084, although the number of degrees of freedom is the sum 
of the two samples, it is necessary to subtract one from each sample, leaving, in this case, 
30 total. 
c = critCVM[30, 0.05]

1.7

Numbered line (12) on p. 1085 gives the formula for t0 in a combined instance such as the 
present
t0 = n x-−y

sx2+sy2

I see that n is not the sum of the two samples, but rather the size of one complete sample. 
Inasmuch as the procedure is supposed to allow for samples of different sizes, there must be 
a rule for choosing n when the samples are not the same size, but I do not know it. The 
calculated set-up for t0, shown below, appears in the text answer.

t0 = 16
20.2 -− 19.6

(0.4)2 + (0.6)2

3.3282

I notice that the formula for t0 above contains the sense that x - y in the numerator makes x 
the H0 hypothesis and y the Ha hypothesis. In this case H0 is gasoline B. Since t0 is larger 
than c at the 0.05 level, it means that when the alternative is ignored, B will be triumphant.
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